The hermit crab's nose—antennal transcriptomics
نویسندگان
چکیده
In the course of evolution, crustaceans adapted to a large variety of habitats. Probably the most extreme habitat shift was the transition from water to land, which occurred independently in at least five crustacean lineages. This substantial change in life style required adaptations in sensory organs, as the medium conveying stimuli changed in both chemical and physical properties. One important sensory organ in crustaceans is the first pair of antennae, housing their sense of smell. Previous studies on the crustacean transition from water to land focused on morphological, behavioral, and physiological aspects but did not analyze gene expression. Our goal was to scrutinize the molecular makeup of the crustacean antennulae, comparing the terrestrial Coenobita clypeatus and the marine Pagurus bernhardus. We sequenced and analyzed the antennal transcriptomes of two hermit crab species. Comparison to previously published datasets of similar tissues revealed a comparable quality and GO annotation confirmed a highly similar set of expressed genes in both datasets. The chemosensory gene repertoire of both species displayed a similar set of ionotropic receptors (IRs), most of them belonging to the divergent IR subtype. No binding proteins, gustatory receptors (GRs) or insect-like olfactory receptors (ORs) were present. Additionally to their olfactory function, the antennules were equipped with a variety of pathogen defense mechanisms, producing relevant substances on site. The overall similarity of both transcriptomes is high and does not indicate a general shift in genetic makeup connected to the change in habitat. IRs seem to perform the task of olfactory detection in both hermit crab species studied.
منابع مشابه
Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons
Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellu...
متن کاملHermit crabs perceive the extent of their virtual bodies
A flexible body image is required by animals if they are to adapt to body changes and move effectively within a structurally complex environment. Here, we show that terrestrial hermit crabs, Coenobita rugosus, which frequently change shells, can modify walking behaviour, dependent on the shape of the shell. Hermit crabs walked along a corridor that had alternating left and right corners; if it ...
متن کاملDifferentiation of three common deep-water hermit crabs (Crustacea, Decapoda, Anomura, Parapaguridae) from the South African demersal abundance surveys, including the description of a new species of Paragiopagurus Lemaitre, 1996
Deep-water hermit crabs of the family Parapaguridae can be abundant (up to 20 kg or 1000 hermit crab individuals per haul) in the trawl bycatch collected during South African demersal abundance research surveys. Until recently, only two parapagurid species had been recognized in the bycatch; Parapagurus bouvieri Stebbing, 1910, and Sympagurus dimorphus (Studer, 1883). Detailed examination of nu...
متن کاملShell Selection in the Hermit Crab Clibanarius signatus Heller, 1861 from the Larak Island in the Persian Gulf
Shell selection indices of the dominant hermit crab Clibanarius signatus Heller, 1861, in the Larak Island were studied from September 2011 to June 2012. Among 739 sampled specimens, 41 different gastropod shell types were selected as shelters based on their abundance and local availability. A significant positive correlation (P<0/01) was found between the dimensions of the hermit crab, Cli...
متن کاملTranscriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication.
A major aim of sociogenomic research is to uncover common principles in the molecular evolution of sociality. This endeavor has been hampered by the small number of specific genes currently known to function in social behavior. Here we provide several lines of evidence suggesting that ants have evolved a large and novel clade of odorant receptor (OR) genes to perceive hydrocarbon-based pheromon...
متن کامل